Students explore the key features of the parabola, both geometrically and algebraically.
In problem 1, students will use a sheet of paper to explore parabolas. They will start by marking a point on the center of the paper and producing a series of folds along one of the longer edges that pass through this point.
Tracing along these straight-line folds should produce an envelope of lines, and the locus formed by the paper folding gives and approximation of a parabola. Students may use Cabri® Jr. to do a similar exploration. Students move on to fitting a parabola, they use the formula 4p(y - k) = (x - h)2 to assist them in their exploration.
At the end of this activity, students will be able to write and graph an equation of a parabola with vertex at (h, k) and axis of symmetry x = h or y = k. Students will also be able to derive the formula for any conic.
TI websites use cookies to optimize site functionality and improve your experience. To find out more or to change your preferences, see our cookie policy page. Click Agree and Proceed to accept cookies and enter the site.
You can control your preferences for how we use cookies to collect and use information while you're on TI websites by adjusting the status of these categories.