Complex Numbers Test 4A

Name:

8 9 10 11 12

Question: 1

If $(x - yi)^2 = -24i$ and $x, y \in R$ then x and y could be:

a)
$$x = 2\sqrt{3} \& y = -2\sqrt{3}$$

b)
$$x = -2\sqrt{3} \& y = 2\sqrt{3}$$

c)
$$x = 2\sqrt{3} \& y = 2\sqrt{3}$$

d)
$$x = -3\sqrt{2} \& y = 3\sqrt{2}$$

e)
$$x = 3\sqrt{2} \& y = -3\sqrt{2}$$

Question: 2

If $z_1 = a + bi$ and $z_2 = c + di$ which one of the following relationships is true:

a)
$$\overline{z}_1 - \overline{z}_2 = \overline{z_1 - z_2}$$

b)
$$\overline{z}_1 z_2 = z_1 \overline{z}_2$$
 c) $\sqrt{z_1^2} = |z_1|$

$$c) \qquad \sqrt{z_1^2} = |z_1|$$

d)
$$\frac{1}{z_1} + \frac{1}{z_2} = \overline{z}_1 + \overline{z}_2$$
 e) $|z_1| + |z_2| = z_1 \overline{z}_1 + z_2 \overline{z}_2$

e)
$$|z_1| + |z_2| = z_1 \overline{z}_1 + z_2 \overline{z}_2$$

Question: 3

If $(3\sqrt{3} + 3i)(4\sqrt{5} - 4\sqrt{5}i) = rcis(\theta)$ then θ is equal to:

a)
$$\frac{5\pi}{12}$$

a)
$$\frac{5\pi}{12}$$
 b) $-\frac{5\pi}{12}$ c) $\frac{\pi}{12}$ d) $-\frac{\pi}{12}$

c)
$$\frac{\pi}{12}$$

d)
$$-\frac{\pi}{12}$$

e)
$$\frac{\pi}{5}$$

Question: 4

If z = -a - ai where $a \in R^+$ then $Arg(z^5)$ is equal to:

a)
$$\left(-\frac{3\pi}{4}\right)^5$$
 b) $-\frac{5\pi}{4}$ c) $-\frac{15\pi}{4}$ d) $-\frac{\pi}{4}$

b)
$$-\frac{5\pi}{4}$$

c)
$$-\frac{15\pi}{4}$$

d)
$$-\frac{\pi}{4}$$

e)
$$\frac{\pi}{4}$$

Question: 5

If $z = 3\operatorname{cis}\left(\frac{\pi}{7}\right)$ then $(\overline{z})^{-1}$ is equal to:

a)
$$\frac{1}{3}$$
cis $\left(\frac{\pi}{7}\right)$

b)
$$\frac{1}{3}$$
cis $\left(-\frac{\pi}{7}\right)$

c)
$$\frac{1}{3}$$
cis $\left(\frac{7}{\pi}\right)$

a)
$$\frac{1}{3}\operatorname{cis}\left(\frac{\pi}{7}\right)$$
 b) $\frac{1}{3}\operatorname{cis}\left(-\frac{\pi}{7}\right)$ c) $\frac{1}{3}\operatorname{cis}\left(\frac{7}{\pi}\right)$ d) $-3\operatorname{cis}\left(-\frac{7}{\pi}\right)$ e) $-3\operatorname{cis}\left(\frac{7}{\pi}\right)$

e)
$$-3 \operatorname{cis} \left(\frac{7}{\pi} \right)$$

Question: 6

Given $\sin(\theta) - i\cos(\theta) = cis\left(\theta - \frac{\pi}{2}\right)$ then $(\sin(\theta) - i\cos(\theta))^{12}$ could be written as:

a)
$$cis(12\theta)$$

b)
$$-cis(12\theta)$$

c)
$$\operatorname{cis}(-12\theta)$$

b)
$$-\operatorname{cis}(12\theta)$$
 c) $\operatorname{cis}(-12\theta)$ d) $-\operatorname{cis}(-12\theta)$

Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 7

If $P(z) = z^3 + az^2 + 8z + 6$, given z + 1 - i and z + c are factors where $a, c \in R$ then it follows:

a) a=2 and c=0

b) a=5 and c=3

c) a=8 and c=6

d) a=4 and c=2

e) a = -8 and c = 6

Question: 8

If P(z) is a polynomial in z of degree 5 with real coefficients, then which one of the following could be true?

- a) P(z) = 0 can have two real roots and three complex roots.
- P(z) = 0 can have three real roots and one pair of complex conjugates roots
- P(z) = 0 can have four real roots and one complex root.
- d) P(z) = 0 can have five complex roots.
- P(z) = 0 can have no real roots.

Question: 9

Which one of the following is **NOT** a solution to: $z^6 - 64 = 0$

- $2\operatorname{cis}\left(\frac{\pi}{3}\right)$ b) $2\operatorname{cis}\left(\pi\right)$ c) $2\operatorname{cis}\left(\frac{\pi}{6}\right)$ d) $1-\sqrt{3}i$ e) $-1+\sqrt{3}i$

Question: 10

The set of points in the complex plane defined by |z-4| = |z+2i| corresponds to:

- A circle with centre 4-2i and radius 1
- A circle with centre -4+2i and radius 1
- c) A point given by 4-2i
- d) A point given by -4+2i
- e) A straight line given by Im(z) + 2Re(z) = 3